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Abstract. The standard implementations of the GMRES and Arnoldi methods
for solving large Tinear systems involve Gram-Schmidt processes which
are potential sources of significant numerical error. Alternative
implementations are outlined here in which orthogonalization by House-
holder transformations replaces the Gram-Schmidt processes. These
implementations require essentially the same storage and arithmetic

as the standard impiementations, and they should have better numerical

properties.
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1. Introduction.

In recent years, there has been a great deal of interest in

iterative methods for solving large linear systems of equations

Ax = b (1.1)

in which AeR™M" s non-symmetric. Of interest here are two of these
methods, the generalized minimal residual (GMRES) method of Saad and
Schultz [6] and the Arnoldi method described by Saad [4]1. The reader
is referred to [4] and {61 for a full discussion of these methods and
their standard implementations. For examples of the successful appli-
cation of these methods to problems arising from the numerical solution
of ordinary and partial differential equations, see Brown and Hindmarsh
[2] and Wigton, Yu and Young [71].

The standard implementations of the GMRES and Arnoldi methods
center around the Arnoldi orthogonalization algorithm for inductively

generating orthonormal bases { Vis eees Vo } of Krylov Subspaces
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= m-l = = -
Ky = SPan { g Aro, R | g Yym=1, 2, ... , where ry b Axo
for an initial approximate solution Xq of (1.1). This algorithm is
usually given as follows ( || - || and (-,*) denote the Euclidean norm
and inner product ):
Arnoldi orthogonalization:
1. Set Vi =1 /|l o i
2. Forj=1,2, ... , do:
h1.j = Avj > Vs ) 1i=1,2, ... , ],
J
A
V. = Av. - ¥ h,. v.,
j+l 3 42 13
- A
hj+1,j = || Vi+1 I,
A
Vi T Ve e

This is a Gram-Schmidt process and is numerically untrustworthy. Because
of roundoff, there may be severe loss of orthogonality among the computed

V.

j'S- In practice, it is usual to implement Arnoldi orthogonolization

using the modified Gram-Schmidt process ( see Golub and Van Loan [3] ).
Mathematically, this is just a rearrangement of the standard process;
computationally, it has superior properties.

Unfortunately, even the modified Gram-Schmidt process can fail
to perform well if the vectors on which it operates are not sufficiently
independent. Indeed, if S =T 51, cee s So ] is an nxm matrix the columns
of which are to be orthonormaiized and if Q = [ 99s -++ 5 A 1 is the
computed result of applying modified Gram-Schmidt to the columns of S

using floating point arithmetic with unit rounding error u, then



Bjorck [1] has shown that

n

Qg = 1+E, LEN = uwalS), (1.2)
where the condition number k,(S) is the ratio of the largest sinqgular
value of S to the smallest. Saad [5, p. 214] has suggested that Gram-

Schmidt orthogonalization is a major source of errors in practice for

the methods of interest here.

There is an alternative orthogonalization procedure based on
the use of Householder transformations which is reliable even if the
vectors to be orthonormalized are not very independent. A Householder
transformation is of the form P = [ - 2va, where {| v || = 1. Note
that P = PT = P'l. Also, note that the action of P on a vector or a
matrix can be easily determined using v; in particular, one need not
explicitly form or store P in the applications of interest here. For
more on the properties and uses of Householder transformations, see
Golub and Van Loan [3]1 . To orthonormalize the columns of S =

L Sl’ v s sm 1], one can determine Householder transformations

Pl’ N Pm such that Pm"'Pls = R, an upper triangular matrix. Then

S = Pl"'PmR’ and so the matrix Q consisting of the first m columns of
Pl"'Pm gives the desired orthonormalization of the columns of S. If
Q is computed in floating point arithmetic with unit rounding error u,

then ( Bjorck [1] )

QlQ=1+E, el = u. (1.3)

In view of the greater reliability of orthogonalization based
on Householder transformations, it seems worthwhile to consider implemen-

tations of the GMRES and Arnoldi methods in which this orthogonalization
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replaces the Gram-Schmidt processes in the standard implementations. We
outline such implementations here.” Storage and arithmetic for these
implementations are approximately the same as for the standard imple-
mentations. A major difference is that in our implementations, most
resources go into the creation and storage of vectors associated with
the necessary Householder transformations; it is not necessary to deal
explicitly with the orthonormal bases of Krylov subspaces which these
transformations implicitly determine. In the standard implementations,
most resources go toward explicitly creating and storing these ortho-
normal bases. In both the standard implementations and in our imple-
mentations, there appear upper Hessenberg matrices which must be
triangularized. To be consistent with the overall goal of numerical
stability, we use Givens rotations for this task in both implementations
here. Optionally, one can implement the Arnoldi method using Gaussian
elimination with partial pivoting at slightly less expense.

The implementations given here are of the "restarted" or
“iterative" versions of the GMRES and Arnoldi methods ( see Saad [41,
Saad and Schultz [61 ). In these versions, the iteration proceeds for
no more than a fixed, preset maximum number of times. If an adequate
approximate solution has not been found by then, then the method is
restarted with the last approximate solution used as the new initial
guess. As in the standard implementations, our implementations allow
the size of the residual to be determined at each iteration without
having to compute the actual approximate solution at each iteration.
Thus the size of the residual can be tested at each iteration to

determine whether an adequate approximate solution has been reached.



Once an adequate approximate solution has been reached, or the maximum
number of iterations has been attained, the approximate solution is
explicitly computed. One can, of course, obtain implementations of
the "un-restarted" versions of these methods simply by removing the
upper bound on the number of iterations in the algorithms given here.
It is not so clear how to implement effective "incomplete” Householder-
transformation based methods which are analogues of the incomplete
orthogonalization method (IOM) of Saad [4]. Several possibilities
readily present themselves, but it would obscure the basic issues of
interest to speculate on them here.

Notational conventions are as follows: Capital letters de-
note matrices; lower case letters denote vectors and scalars. Vector
components and matrix entries will be indicated by superscripts in
parentheses, e.g., v(i) denotes the 1}2 component of the vector v.
With or without subscripts or other distinguishing marks, the letters
H, J, P, Q, and R always indicate matrices of the following respective
types: upper Hessenberg, Givens rotation, Householder transformation,
orthogonal, and upper triangular. (See Golub and Van Loan [3] for

definitions and properties.) The iEﬁ standard basis vector, i.e., the

ithcolumn of the identity matrix I, is denoted by e;- Dimensions of
vectors and matrices and, when appropriate, their (possibly) non-zero
elements are implicit from the contexts in which they appear. For

example, if R is pxqg upper triangular and we write R = [ ce;s H, h 1,

then H must be px(g-2) upper Hessenberg and h must be a p-vector with

zero components after the qth . For k = 1, 2, ..., we denote
- k-1
K = L rgs Args «-- 5 A Yo 1
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Z. The GMRES method implementation.

At the kED-iteration of the GMRES method, k = 1, 2, .

ey

one seeks z€K, for which || A(x

K otz -bl = || Az - roll is minimal.

The k-En approximate solution is X T Xxg t 2 It is shown below how

to determine z usingHouseholder transformations. We give first an
overview and then a formal outline of the algorithm.

Finding zek, for which | Az - o Il is minimal is equivalent
to finding yeR® for which [|AKky - |l is minimal. Now

ARy - rg Il = I Ky ('§) |5 and so if K .y = Quuq Ryyq» then

the problem is to minimize || Qsq Rk+1(_§)1{ | Ris1 (_;) ]

| -Bey + H vy I, where [8] = [[r, ] and H, is an nxk upper Hessenberg
matrix. If we write He = ﬁk ﬁi(, then the object is to minimize
Il-ﬁk T (Bel)-f'ﬁk y |l - Since‘ﬁk is n x k upper-triangular, the

desired y is found by solving a k x k upper-triangular system with the

first k components of ﬁk-r(sel) as the right-hand side. It is not
difficult to verify that if A is non-singular and X1 ? A'lb, then

this upper-triangular system is non-singular. F or the minimizing y,

the norm of the residual is the norm of the last (n - k) components

of Qk Bel).

Here, we use Householder transformations to obtain the

factorization Kk+1 = Qk+1 F&+1, i.e., Qk+1 is given implicitly

_ . _ T
by Qk+1 = P1 e Pk+1’ where for i = 1, ..., kt+l, Pi = I - 2v1 Vi
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i vill = 1. These transformations are chosen so that each P, affects

only components i through n of vectors on which it operates. We use
Givens rotations to obtain the factorization H, ='§k ﬁ'k. That is,

ﬁk is given implicitly by Gk = JlT - JkT, Each J; is chosen to

affect only the iEﬁ and (i + 1)EE components of vectors on which it

operates. With ﬁk and Q,,, given in this way, the GMRES iterate

Xo ¥ K Y is determined from y as follows: First, note that Kk = Qk Rk’

where Qk = P1 - Pk and the columns of Rkare the first k columns

T T

of R, ,y- Second, note that R 1

= [ Bel, J R k-1 1, where

k 1

the columns of ﬁk-l are the first (k - 1) columns of ﬁk' Then one

has

- T T %
Xg ¥ Ry = xg ¥ P PoDBe J 0 R Y

I n addition, note that'ﬁkT (Bel) = dy e Jyg (Beq) has zero components

below the (k + 1)2% , and so the residual norm is just IJk ey (Bel)(k+1)|,

GMRES Algorithm:

1. Start : Suppose that Xg and a tolerance TOL are given.
(a) Compute K1 = [rO] = [b - Axoj.

(b) Determine P1 such that P. K; = [Re,]

171 1
2. Iterate: For k=1, 2, ...

(a) Suppose that one has

(i) Pl’ ce s Pk such that



fBel], if k=1
P .. P =
k ‘ ' 1 ﬁ '1‘ s .
[Bel, Hk-l)’ ifk>1;
(ii1) if k > 1, then Jl’ cees Jk_1 and Rk-l such that
a1 o 9 Her T Rylp s
‘.. _ k-1
(iii) u=A ro
Bel, if k=1
(iv) v =
Jyq -+-- 9y (Bep), if k> 1.
(b) Overwrite u<Au, and set w = Pk . P1 u.
(c) Determine PL 41 acting on components k+l, ..., n such that

P41 W has zero components after the (k + 1)53.
(d) Overwrite WP g W

(e} If k > 1, overwrite w<dJ J, W .

k-1 """ "1
(f) Determine Jk acting on components k and k + 1 such that

Jk w has zero components after the kEh~.

(g) Overwrite wed, woand set R = TR s Wl

(h) Overwrite vel, v
(i) Set r = |v(k+1)|; if r < TOL, go to (3).

3. Solve:
(a) Suppose that one has from (2)

(i) Pl, R Pk such that



(b)

(c)

(d)
(e)

(Belj, if k=1

k 1 K : .
Theys He 11 if k>1;
(ii) Jis -o-s 9y and R, such that
Jk - Jl Hk = Rk :

(iii) v = Jp - 9y (Bel) ;

(iv) the residual norm r.

Determine y so that || v - 'ﬁk y || is minimal by solving a
k x k triangular system with the first k rows of ﬁk as

coefficient matrix and the first k components of v as right-
hand side.
Set

P1 [Beljy, if k=1

T T &

Py --- P [Bes, 0y oo dy 0 Ry gy, i ko> L,

where, when k > 1, ﬁk-l consists of the first (k - 1) columns

of Rk'

Overwrite xoex0 + w.

If r < TOL, accept x, as the solution; otherwise, return to (1).
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3. The Arnoldi Method Implementation.

At the kI jteration of the Arnoldi method, k = 1, 2, ... ,

one tries to find ZEKk for which [ A(X0 +2)-b1=1[Az- s 1 s

orthogonal to K, , i.e., for which KkT[ Az - r 1=0. The Kth

approximate solution is then X =X, *z. We show how to determine such

a z using Householder transformations.

Finding ZEKk for which KkT{ Az - r 1=01is equivalent to

finding ye RK for which

e T o T -l
0=K, [AK y-rsd=K K (y)

Let Pl’ eees Pk+1 be Householder transformations such that Pk+1 . P1 Kk+1

= Rk+1 and such that each Pi affects only components i through n of vectors

on which it operates. Then Pk e P1 Kk = Rk, and it follows that the

desired y satisfies

p R

-1
1 1 ly)

-1
k1 O y)

k+1

k Pre1 R

Since Rk has only zero rows after the kzh, this becomes

T

) o (3.1)

One can show that if "1 = b - Axk-l # 0, then Rk is of full rank. Thus

if L # 0, then (3.1) holds if and only if the first k components of
-1

-1 . . -1
Rsp (Cy) are zero. In this case, since R, ('y) =P, ... P Keey L )
= Pk+1 . P1 [ AKk y-r, 1, the absolute value of the (k+1)St component
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of R, .1 ('i) is the norm of the residual.

To determine y, we write R, ., = [Be;, H 1, where 8] = | r, I

and Hk is an n x k upper Hessenberg matrix. We assume that the first k
rows of Hk constitute a nonsingular k x k matrix; otherwise, the method

breaks down. If k = 1, then writing H; = 1h 1, one has y = [B/hl(l)]

with residual norm 'Bhl(Z)/’hl(l)l. If k > 1, then we choose Givens

rotations J;, ..., J,_; such that

J J, H =

k-1 o0 97 Hy [Rk-l' hk],
where ﬁk-l is n x (k-1) upper triangular, and such that each Ji affects

only components i and (i+1) of vectors on which it operates. Note that

h, has zero components after the (+1)3E . set v = Jpop -+ Jp (Bey).

Then y is the solution of an upper-triangular system with the first k

rows of[ﬁﬁk_l, h, 1 as coefficient matrix and with the first k components

of v as right-hand side. The residual norm is l(v(k) hk(k+1))/ hk(k)].

Once y is known, the kzh Arnoldi iterate Xs + Kk y is given by

Xo + P1 [Belj y, if k=1

x + Ky =
0 k T T = .
Xo + P1 ce Pk [Bel, Jl ces Jk_1 Rk-lj y, if k > 1.

Arnoldi Algorithin :

1. Start : Suppose that X0 and a tolerance TOL are given.

(a) Compute Ky = (ryd = (b - Axoj .

(b) Determine P1 such that P1 K1 = [Beq].
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2. Iterate: For k=1, 2, ..., k :
e max

(a) Suppose that one has

(1) Pl’ cens Pk such that

(geyd, if k=1
(Bep, H 11, if k> 1;

(i) if k = 2, then h, such that H1 = £h1] 5

1

if k > 2, then hk-l with zero components

after the k! and Jis +--» Jy_p and Ry, such that
Jep o Iy Hg = TR oo hy_qd
. S
(ii1) u=A ro s
Bel, ifks<?2
(iv) .
Jep - Iy (Bep), if k> 2.
(b) Overwrite u<Au, and set w = Py -+ Ppu.
(c) TDetermine P acting on components k+l, ..., n such that
k+1

Pk+1 w has zero components after the (k+1)§£-.
(d) Overwrite weP, ., w; if k = 1, set h) = w.

(e) If k > 2, overwrite weJ RV P

k-2 ° 1

(f) If k > 1, determine Jy_1 acting on components (k-1) and k

such that J, _, h, _, has zero components after the (k-1)§3~.

(g) If k> 1, overwrite h J h ,

k-1 © Yk-1 k-1

set hk = Jk-l W, and set
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Chy 13 if k =2

R =
k-1 (R h .1, if k> 2 .

k-2° k-1
(h) If k> 1, overwrite v+Jk_1v

(k+1)

K )/ hk(k)l; if r < TOL, go to (3) .

(1) setr= | n

(3) Soilve:

(a) Suppose that one has from (2)

(1) Pl’ ces Pk such that

[Belj, if k=1

e i fe rBey, Hy 1o if k> 15
(i1) hk with zero components after the (k+1)§i-, with
H1 = [h1], and, if k > 1, then Jl, cees Jk—l and
Ry_q such that
o1 =+ 9p He = R 45 b 3
Bey s if k=1
(iii) v=

oy -+ 9y (Bey), if k> 15

(iv) the residual norm r.
(b) Determine y by solving a k x k triangular system, the coefficient
matrix of which consists of the first k rows of
[hlj, ifk=1

(R hk], ifk>1

k-1°
and theright-hand side of which consists of the first k components

of v.
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(c) Set

P1 [Beljy, if k=1
T T = .
P1 .o Pk [Bel, Jl - Jk—l Rk_ljy, if k>1.,

(d) Overwrite X <« X+ w.
0o o

(e) Ifr < TOL, accept X, as the solution; otherwise, return to (1).



15.

REFERENCES

A. Bjorck, "Solving linear least squares problems by Gram-Schmidt

orthogonalization," BIT, 7 (1967), pp. 1-21.

P. N. Brown and A. C. Hindmarsh, "Matrix-free methods for stiff
systems of ODE's,"” Lawrence Livermore National Laboratory

Report UCRL-90770, Rev. 1, Feb. 1985; to appear in SIAM J. Num. Anal.

G. H. Golub and C. F. Van Loan, Matrix Computations, Johns Hopkins

University Press, Baltimore, 1983.

Y. Saad, "Krylov subspace methods for solving large unsymmetric

Yinear systems," Math. Comp., 37 (1981), pp. 105-126.

Y. Saad, "Practical use of some Krylov subspace methods for solving
indefinite and nonsymmetric linear systems," SIAM J. Sci. Stat.

Comput., 5 (1984), pp. 203-228.

Y. Saad and M, H. Schultz, "GMRES: a generalized minimal residual
algorithm for solving nonsymmetric linear systems," Yale University

Computer Science Dept. Research Report YALEU/DCS/RR-254, Aug., 1983.

L. B. Wigton, N. J. Yu, and D. P. Young, "GMRES acceleration of
fluid dynamics codes,” Proceedings of the American Institute of
Aeronautics and Astronautics 7Eﬂ Computational Fluid Dynamics

Conference, Cincinnati, Ohio, July 15-17, 1985.



